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a b s t r a c t 

The aim of the proposed work is to review the various AI techniques (fuzzy logic (FL), artificial neural network 
(ANN), genetic algorithm (GA), particle swarm optimization (PSO), artificial potential field (APF), simulated an- 
nealing (SA), ant colony optimization (ACO), artificial bee colony algorithm (ABC), harmony search algorithm 

(HS), bat algorithm (BA), cell decomposition (CD) and firefly algorithm (FA)) in agriculture, focusing on expert 
systems, robots developed for agriculture, sensors technology for collecting and transmitting data, in an attempt 
to reveal their potential impact in the field of agriculture. None of the literature highlights the application of 
AI techniques and robots in (Cultivation, Monitoring, and Harvesting) to understand their contribution to the 
agriculture sector and the simultaneous comparison of each based on its usefulness and popularity. This work 
investigates the comparative analysis of three essential phases of agriculture: Cultivation, Monitoring, and Har- 
vesting, by knowing the depth of AI involved and the robots utilized. The current study presents a systematic 
review of more than 150 papers based on the existing automation application in agriculture from 1960 to 2021. It 
highlights the future research gap in making intelligent autonomous systems in agriculture. The paper concludes 
with tabular data and charts comparing the frequency of individual AI approaches for specific applications in the 
agriculture field. 
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. Introduction 

The ancient culture of any country deals with agricultural activities
or the overall development for thousands of years. Agricultural activi-
ies have an impact on human beings as per the energy requirements in
erms of healthy foods are concerned. The growth cycle of any crop goes
hrough three fundamental phases: cultivation, monitoring, and harvest-
ng phases, and each phase have a number of activities. The cultivation
hase deals with selecting crops to be planted, planning of land, land
reparation, irrigation planning, seed preparation, and seed sowing. Af-
er the cultivation phase, the main task of farming is to monitor and
ontrol the growth of the crops. In this monitoring phase, the activities
epend on time, such as scheduled crop health monitoring, fertilizer
se, disease identification, weed identification, and pesticide spraying.
t last, the most crucial phase of the crop cycle is the harvesting phase
hich includes the activities such as crop cutting, segmentation, storing,
nd selling to the market. 

At present, most agricultural activities are traditionally practiced, re-
ulting in non-profitable and non-economic farming. Traditional farm-
ng without AI and robotics sufferers from 
∗ Corresponding author. 
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• It is more time-consuming and requires much effort to prepare and
plan land, irrigation, and seed sowing. 

• Involves more human resources for handling the various agriculture
processes. 

• Lack of accurate information on weather, soil conditions, and use of
fertilizers. 

• It takes more time and effort to monitor crops’ health and disease
identification manually. 

• It requires more labor for weed identification and control. 
• Traditional spraying of pesticides affects the health of the farmers as

well as reduces crop productivity. 
• Old ways of crop cutting and segmentation of healthy crops and

fruits are tedious tasks. 
• Poor practices in storing harvested food led to its degradation. 

Further, due to a lack of knowledge, experience, and problems in-
olved in agriculture, many of the young generations are disconnecting
hemselves from agricultural activities, which will undoubtedly raise
he question of future food production and the requirements. The agri-
ultural development revolution took place from 1.0 to 4.0 (today) to
vercome all these issues. It is replacing the traditional farming system
ith the most advanced AI-based system in which the machine itself
akes the decisions for solving real-time issues. At present, young en-

ineers and scientists are working a lot to make the agriculture process
ffortless, intelligent, cost-effective, highly productive, time-efficient,
ustainable, healthy, and wealthy society. AI-based systems include sen-
ticle under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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ors technology, IoT, data management technology, intelligent decision-
aking algorithm, robotics, and advanced mechanisms. 

There are very few review papers available on the implementation
f AI in the field of agriculture [1–7] . The available papers highlight
he specific area of agriculture, such as weed identification and pesti-
ide spraying, irrigation planning, crop yield monitoring and prediction,
reenhouse automation, navigation and path planning, disease identi-
cation, segmentation, harvesting of crops and fruits, etc. None of the
vailable papers have considered the agriculture field’s overall processes
nd activities consisting of various phases such as cultivation, moni-
oring, and harvesting. It is also seen that there is no systematic re-
iew available on the application of AI in the different activities of each
hase. In most of the review works, the data is presented neither in tab-
lar form nor graphically for easy understanding. The comparative data
s also missing between the various cited papers. The available review
apers do not provide that depth as they have considered minimal pa-
ers for reviewing. The main drawback of the available review papers
s the lack of explaining the existing research gap qualitatively as well
s quantitatively in agriculture using AI. 

The proposed review paper has been prepared after reviewing more
han seven hundred papers and citing more than 150 papers for review
ork. In this work, we have presented a systematic review of AI tech-
iques over various agricultural phases, including the path planning of
griculture robots. The paper highlights the major areas where AI is im-
lemented most commonly, and it also highlights the areas where the
pplication of AI is very much needed. The paper identifies the areas
f agriculture where the improvement of the existing process may be
nhanced using various available techniques. The proposed work shows
he applications of various AI techniques and algorithms, which have
een used widely, and identifies the techniques used as a hybrid model.
ere, the analysis of AI is studied based on simulation work, experimen-

al work, application as a hybrid approach, and application for solving
roblems in agriculture. The detailed tabular analysis and graphical con-
lusion are presented year-wise to make the review more understand-
ble. Using the in-depth proposed review, one should be able to dif-
erentiate the phases, such as cultivation and harvesting, that are still
racticed traditionally. Most of the AI implementation is done in the
onitoring phase only. The AI techniques such as fuzzy logic (FL), ar-

ificial neural network (ANN), genetic algorithm (GA), particle swarm
ptimization (PSO), artificial potential field (APF), simulated anneal-
ng (SA), ant colony optimization (ACO), artificial bee colony algorithm
ABC), harmony search algorithm (HS), bat algorithm (BA), cell decom-
osition (CD) and firefly algorithm (FA) have been proposed for rigorous
nalysis. 

Here, the various AI approaches used so far in various agriculture
rocesses are explained in Section 2 . Section 3 of the paper provides
 detailed discussion of the AI approaches. The conclusion and future
cope are provided in Section 4 . 

. AI techniques used in agriculture 

The problems associated with various agricultural activities can be
olved by implementing AI techniques ( Fig. 1 ). The research work from
he year 1960 to 2021 has provided numerous methodologies in the field
f agriculture, and it is presented below. 

.1. Fuzzy logic 

FL has many advantages over traditional decision sets. FL is a set
f rules that solve problems with nonlinearity, complexity, and uncer-
ainty. It was first introduced by L. Zadeh in 1965 [8] . The FL is the
ogical approach that gives a precise decision about the ongoing condi-
ion with the value called degrees of truth. Like other traditional sets, FL
oes not give true or false results. FL, as an AI technique, helps the con-
roller understand the correct changes with the time of the system in the
2 
eal world to take the precise steps to act upon with time. The develop-
ent of FL in the last few years has evolved the decision power of con-

rollers. Nowadays, the FL technique is widely used in the agricultural
omain in various processes such as agricultural UAV navigation, aerial
maging, crop-cutting robot, farm monitoring, harvesting, and many
ore. 

Decision and planning are very important in agriculture. The sud-
en change in climate affects the farmer’s planning in the crop growth
ycle. Shahjalal et al. [9] have worked on the FL model to analyze cli-
ate change’s consequences on agricultural production. With this study,

armers can make the right decision to plant crops. Further, the applica-
ion of FL for an understanding of carnation seedlings and their growth
ycle parameters, such as shape, is presented by Fujiwara [10] . His-work
resents the FL with an image processing algorithm and achieves a 97%
udgment rate. The agriculture processes are complex, and it requires
uch effort to perform them within time. By considering this aspect,
assiri et al. [11] have worked on the packaging of good tomatoes us-

ng FL based classification model. The mature tomatoes were analyzed
pon fruit color, size, and hardness. The hardness was tested by a fuzzy
embership function and with an Instron compression test. Further,
ollewet et al. [12] have proposed the fuzzy adaptive controller as a
erfect control technique to help agricultural robots work more effec-
ively in farming. They have used meta-rules, specialized learning ar-
hitecture, and cell-to-cell mapping algorithms to achieve their goals.
ne such FL-based approach is developed and implemented by Hagras
t al. [13] on agriculture robots to minimize human effort in harvest-
ng crops. Hayashi et al. [14] , Cho et al. [15] , and Xue et al. [16] also
orked towards the development of a vision-based fuzzy feedback sys-

em for agriculture robots. The work is more focused on the problems
ccurring during the harvesting of plants. They have used FL to help
he robot arm to reach the fruit and provide feedback to control fur-
her tasks. While working on the farm, autonomous navigation is the
iggest challenge for any mobile robot. Hence such a problem is ad-
ressed by Borrero et al. [17] , Kannan et al. [18] , and Barakat et al.
19] by developing fuzzy-based efficient steering control action. The
ame problem of autonomous navigation in the presence of complexity
f crop row lines is also solved using FL with the sensor technology
y De Sousa et al. [20] . The robot equipped with sonar-based map-
ing and FL was developed by Toda et al. [21] to minimize the ef-
ort in monitoring crops. In order to take proper care of crops, spray-
ng pesticides is an important step in agriculture engineering. Abdel-
atif et al. [22] presented an unmanned aerial vehicle based on FL to
ake fast and autonomous spraying of pesticides. In their work, FL is
sed to control the input signals from sensors to output to actuators.
ho et al. [23] have developed an FL controller to achieve fast opera-
ions of spraying in the orchard environment. They used machine vision
nd FL to control the operation time of hydraulic cylinders. Similarly,
ne more application of vision-based navigation for agriculture robots
s provided by Zhou et al. [24] using reinforcement learning and fuzzy
ules. 

The new concept of E-farming based on FL is given by Narendran
t al. [25] . Their work is related to the agriculture robot, which is de-
igned and developed using FL to control the microcontroller for precise
ovement of motors in performing multiple functions in agriculture,

uch as ploughing, seed dispensing, watering, pesticide spraying, and
emperature monitoring. One more mild stone in the field of agricul-
ure engineering is given by Prema et al. [26] . In their work, they have
lso provided the application of FL to control the robot from a remote
ocation. They proved that the PID controllers are not efficient com-
ared with FL. Any intelligent systems need precise and proper input
ata from the sensor, but multiple vibrations in the mechanical systems
isturb it. Paul et al. [27] have presented an FL-tuned PID controller for
he agriculture manipulator vibration control to solve the problem. The
on-linearity is controlled by using Type-2 FL. The recent work in UAV
s presented by Nderu et al. [28] for perfect aerial images with the help
f fuzzy technologies. For precision agriculture, the data monitoring of
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Fig. 1. Implementation of AI techniques for agriculture activities. 
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rops is much needed for proper controlling of plant growth. As per the
uthors, the fuzzy technique helps UAVs handle and overcome vague-
ess and ambiguity. The FL is implemented with many other techniques
n order to get maximum advantage in the same input. One such hybrid
pproach is presented by Morimoto et al. [29] . This work used FL, GA,
nd NN for greenhouse automation to reduce human effort. Noguchi
t al. [30] have presented a hybrid approach using the FL and GA for
recision farming. In their work, they focused on how to control weed as
t affects the growth cycle of crops. The implementation of FL and GA is
sed to classify the plants and weeds separately. Hagras et al. [31] have
mplemented the FL and GA to develop autonomous agriculture vehicles
or navigation based on crop lining, spray, ploughing, and harvesting.
he application of the FL and GA-based hybrid approach is provided for
utonomous speed spraying by Cho et al. [32] . Hagras et al. [33] have
ocused more on FL and GA to develop an intelligent agricultural robot
o independently take their learning decision online while performing
arious farming tasks. The vital step in agriculture is crop inspection
hich is addressed by Camci et al. [34] using UAV. In that work, the AI
lgorithms such as FL, PSO, and NN are used to solve UAVs’ real-time
hallenges during an inspection of the crop. 

The development of FL has also been seen for yield prediction, crop
eeds recommendation systems and irrigation forecasting. As we know,
he growth of crops majorly depends on humidity, temperature, and soil
oisture. Upsdhaya et al. [35] have used FL with all these parameters

o study the possibility of vegetable crop growth and yield. With these
esults, one can plan effective irritation methods. Similarly, Parbakaran
t al. [36] have worked on FL and SVM agriculture yield prediction sys-
ems. The system has a 95% of forecasting accuracy rate. Furthermore,
he system also gives live crop needs recommendations to increase pro-
uction. To control the use and need for soil fertilizers, Haban et al.
37] have developed a soil fertilizer recommendation system using FL.
he common fertilizer level data are used as the input to the system, and
hen the system will recommend the fertilizer needed. Likewise, Alfin
t al. [38] have presented recommendations system using FL and vari-
us soil parameters to keep track of sugarcane plant needs. The system
rovided the perfect recommendation of water and fertilizer to use. As
 control of action, Puspaningrum et al. [39] have presented FL-based
rrigation forecasting systems. The system controls the valve opening as
er the forecasted needs of a crop. 

.2. Artificial neural network 

The ANN is the trending area of research at present as multi-solution
or complex problems is considered. It is inspired by the neural system of
3 
he human brain, which acts emergently with the perfect action on the
hange by analyzing the effects. ANN is broadly used to solve dynamic
omplex problems because it works on the input, hidden, and output
ayers. These layers are perfectly organized as per the complexity of the
roblem. This layer is formed by an activation function called nodes.
hese nodes have different information and data sets used to analyze
ew input characteristics. The input layer continuously recognizes the
et of input characteristics with pre-learn data sets. Afterward, these sets
f characteristics are diagnosed with the help of hidden layers to give
he highest matching solution from the data sets to the output layer. At
ast, the output layer provides a final solution. 

The application of ANN is widely adopted in the field of agriculture
or many aspects. Elizondo et al. [40] have presented their work on the
NN for predicting flowering and checking the maturity of soybean.
armers are not able to predict their yield due to a lack of information
n crop parameters. The authors have used air temperature, photope-
iod, and days of flowing in this work as input to the ANN model. The
NN has been used in plant species classification using a deep convolu-

ional neural network by Dyrmann et al. [41] . In that work, the ANN is
sed to identify the images of seedlings at early growth stages. Behroozi-
hazaei et al. [42] have presented a robust algorithm based on ANN and
A for the segmentation of grapes. Likewise, the apple recognition sys-

em based on a convolutional neural network was developed by Liang
t al. [43] . The harvesting phase is the most critical phase, which de-
ends on the product conditions and complexity of the environment.
he algorithm aims to overcome these problems. They have used GA to
ptimize ANN for segmentation based on color. Similar to the above, the
NN-based sorting mechanism was developed by Kumar et al. [44] to
ecide between healthy or deceased pomegranate fruit. Dimililer et al.
45] have developed a system that will help farmers identify unwanted
lants in their land within 0.2 s. The system is based on image pro-
essing and backpropagation neural network techniques. The algorithm
akes the images as input and provides the analysis as an output. The
esults have proved that the system is effective and robust to use. One
ore difficult task is to cut and keep the required path of garlic, on
hich Thuyet et al. [46] have worked in which the process of sorting
arlic by using a convolutional neural network for autonomous grad-
ng is performed successfully. They have developed a fully automated
omputer system for garlic operation. 

Many researchers in agriculture have practiced the implementation
f the vision system with ANN. Cho et al. [15] , Zhao et al. [47] , Tang
t al. [48] , and Dorrer et al. [49] have used standalone ANN to provide
ision intelligence in precision farming. Weed monitoring and control is
 much-needed task in agriculture. The available classification system
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as some limitations, such as being tested for each field of operation.
o overcome this problem Hall et al. [50] have come up with a classi-
cation model with low-dimensional features using deep convolutional
eural network data collection (DCNN) algorithms. They have used it
n cotton plants with a mobile platform and found pure cotton groups
nd weed groups. McCool et al. [51] present a similar work idea using
ightweight models for agricultural robots based on lightweight DCNN
nd Champ et al. [52] . The hybrid approach using ANN-FL-GA is dis-
ussed by Noguchi et al. [30] . They applied vision intelligence for weed
ontrol. Sa et al. [53] used the UAV for weed mapping. With the help of
ultispectral imaging and a deep neural network, they have generated
 weed map for precision farming. The application of ANN to detect
he state of the fruit (mature or immature) is one of the most challeng-
ng tasks. Such a problem of strawberries is addressed using ANN by
abaragamuwa et al. [54] . The specialized machine vision system on
n agriculture robot for harvesting such strawberries is designed using
NN by Ge et al. [55] . Path planning of agriculture robots is essential
hen moving on to the farm to perform a specific task. By taking it

nto consideration, the path-planning problem of agriculture robots us-
ng ANN is addressed by Lulio et al. [56] . Bo et al. [57] have worked
n path recognition methods for agricultural mobile robots in a shadow
nvironment. In order to reduce the human effort in the greenhouse, the
NN approach can play an important role. To achieve this, Morimoto
t al. [29] have provided experimental work on apple and orange farms,
nd observed results were up to the mark. 

Deep learning models are very much efficient in decision-making,
ntelligent prediction, classification, and many more. Xenakis et al.
58] have presented a diagnosis support system implemented on a
obotics system for plant disease diagnosis using CNN. The deep learn-
ng algorithm has performed out of the box with a 98% classification
ate. Furthermore, to keep a close eye on healthy crops, Sharmila et al.
59] have presented an insect classification algorithm based on the CNN
nd K-Means clustering algorithm. The results helped farmers to iden-
ify the pest and take needed actions in time. Singh et al. [60] have
ighlighted the central problem of weed identification and have pro-
ided a system powered by a region-based convolutional neural network
R-CNN) deep learning algorithm for crop-weed segmentation and de-
ection. The system was also able to give the coordinates of the weeds
or easy actions. Similarly, Mary et al. [61] have developed a weeding
obot for weed control based on CNN. Using the deep learning model,
he robot identifies the weeds and then performs drilling actions to kill
eeds. The presented robot is eco-friendly and cost-effective. A deep

earning model named as long short- term memory to forecast low tem-
eratures zone is presented by Guillen-Navarro et al. [62] . Mhango et al.
63] have worked on a potato plant mapping model using Faster region-
ased CNN and input from UAV. The work is performed in order to man-
ge and make essential decisions before harvesting potatoes. Further,
han et al. [64] have developed a deep learning model for UAV’s pre-
ise spraying based on an R-CNN. The live experiment showed the area
n need of spraying with 88.57% accuracy. Deep learning models per-
orm excellently for the classification problem in the harvesting phase.
unir et al. [65] have worked on an Automatic fruit detection tool for

asy harvesting using deep learning NN. They have used resNet-50 for
ransfer learning and have got results on 10% training. 

.3. Genetic algorithm 

A GA is a met heuristic (evolutionary) algorithm used as an optimiza-
ion tool in AI. It was introduced by John Holland [66] in 1960. The GA is
he AI technique inspired by genetic principles and the steps of the natu-
al section to give us an optimal solution for complex problems. The GA
s used in many industrial applications for the optimization of various
rocesses. The genetic evaluation can be stated in every new genera-
ion that is evaluated by crossover and mutation from old individuals.
t will always have a new and mixed approach with strong species of in-
ividuals as compared to old-generation individuals. Here some species
4 
f individuals pass all the genes where some do not. Those who pass
he genes form new species of individuals, and the process is repeated
or every new generation of individuals. In a GA, the random popula-
ion of individuals has taken, who goes through every individual and
nds the best individuals with maximum fitness value. Here the condi-
ion for solving the problem is there or not is checked. If not, then the
rocess again goes for the new population by adding the genetic infor-
ation (crossover) of the old best individuals, this individual’s species

o through mutation, then we go for the section of an individual with
he highest fitness value, this continues till we get the best fitness value
f the solution for complex problems. 

The GA has been widely adopted in the field of agriculture due to
ts effective working and accuracy in providing optimal results. The ap-
lication of GA in the motion planning of a mobile agriculture robot is
idespread. Various researchers such as Makino et al. [67] , Dohi et al.

68] , Ferentinos et al. [69] , Ryerson et al. [70] , Jihong [71] , and Pham
t al. [72] have presented the standalone GA algorithm for path planning
f the agriculture robot. The problem of path planning of the agriculture
obot is also solved using a combination of GA and other AI techniques
s a hybrid approach. One such effort is provided by Noguchi et al. [73] .
oreover, the comparison of GA and PSO is shown by Mahmud et al.

74] . The application of a fleet of robots to work on various agriculture
asks and a multi-path planning approach is presented by Conesa-Munoz
t al. [75] . 

The proposed work aims to reduce the time required and make it
ost-effective to improve the performance in the path planning of agri-
ultural robots. UAVs are very proficient in monitoring remote farms,
ut it involves multiple planning and problems. Singh et al. [76] have
resented a new trajectory whose parameters are optimized with GA’s
elp. The proposed plan is a perfect projectile trajectory with the base
tation avoiding all the obstacles. It helps them to reduce energy require-
ents. Coverage Path Planning of electric tractors depends on several

actors. The new, improved GA was presented by Shang et al. [77] to op-
imize all the factors affecting the path planning of electric tractors, such
s reducing energy consumption, improving speed, and others. Some of
he authors, such as Gao et al. [78] and Meng et al. [79] , used a vision-
ased system with GA. They aimed to recognize crop rows for better
lanning. An improved GA performed the recognition of the crop row
ines method. They found that GA is effective in finding navigation lines.
acal-Nieto et al. [80] have worked on GA’s visual recognition system

or potato classification. They have tried a system to classify potatoes
ased on their external defects and disease. 

To improve crop production, weed control and soil nutrition con-
rol are crucial factors as it affects crops’ growth cycle. Noguchi et al.
30] have presented their study on precision farming. They have used
L with a GA to classify the crop and weed. A genetic algorithm opti-
ized the input and output membership functions, and they tested the
odel on a soybean farm. Furthermore, Feng et al. [81] have worked on
A-optimized nutrient solution formula for cucumber crops. The model
ives an optimal combination of N, K, Ca, and Mg concentrations in the
olution. The proposed formula helps in high-yield and cucumber farm-
ng. The effective planning of irrigation systems is equally important as
ther agriculture processes. Monis et al. [82] have developed the GA to
ptimize the design of photovoltaic (PV) irrigation pumping. The aim
s to optimize the search space with the help of engineering rules and
A. This method is used to optimize the benchmark of a PV system for a

eal farm. Hence the total cost of the system was reduced. Ahmed et al.
83] have provided the optimal sizing and economic analysis of the PV-
ind Hybrid power system for water irrigation using GA. The spraying

f water or pesticides is a very time-consuming task, and hence automa-
ion of such a task is very much needed. Cho et al. [32] have devel-
ped an improved GA-fuzzy controller with GPS for spaying operation.
ecognition systems in agriculture have been playing an important role
owadays. Tao et al. [84] have demonstrated the perfect recognition
ystem using GA. In the presented work, automatic apple recognition
nd its picking are done using the combination of fusion of color and
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D features. Like this, Behroozi-Khazaeiet et al. [42] have given a robust
lgorithm based on ANN and GA for the segmentation of grapes. The har-
esting phase is the most critical phase, which depends on the color and
omplexity of the environment. The algorithm aims to overcome these
roblems. They have used GA to optimize ANN for segmentation based
n color. They have found a success rate of 99.4% in finding grape clus-
ers. Zou et al. [85] have studied the inverse kinematics solution for a
recision watermelon-picking robot. They aimed to overcome problems
uch as speed, low precision, and not guaranteed watermelon yield rate.
he model used is called Denavit-Hartenberg, which is based on GA and
 non-linear genetic algorithm. For picking the Agaricus mushroom, a
nique robot with three picking arms is being designed and developed.
ia et al. [86] have worked on an avoidance algorithm based on GA for
he three picking arms. The presented algorithm is efficient in perform-
ng the picking without any collisions. Intended for automation in the
reenhouse environment, Tong et al. [87] have used GA. In both works,
he control technique is developed to optimize an unknown agricultural
on-linear system. 

.4. Particle swarm optimization 

A PSO is a well-known metaheuristic algorithm used in various en-
ineering optimization problems. It was introduced by James Kennedy
nd Russell Eberhart in 1995 [88] . The natural swarm behavior inspires
 PSO algorithm to solve non-linear problems. The concept of PSO came
nto existence due to the remarkable capacity of birds and fish to under-
tand and implement communication planning to reach their goals, such
s searching for food when working in a group. The flock of birds does
ot need someone to lead them in search of food. They just follow the
eighborhood birds and reach the goal with proper communication and
eamwork with neighbors. Here, one thing that must be understood is
hat every bird has a valuable experience to support the flock in reaching
ts goal. The particle swarm optimization is based on this fundamental
dea. Here the group of particles follows each other and helps to opti-
ize the problem. Every particle has some value that contributes to the

eam reaching the target. The contribution of each particle by moving
andomly to attend the best position with itself and with goal points is
sed to influence each other. 

The PSO algorithm has many applications in various fields, and agri-
ulture engineering is one of them. Agricultural machinery needs ad-
anced control in order to face agricultural challenges. One of such chal-
enges of improving the control system of mobile agriculture robots by
ptimizing PID parameters using PSO is presented by Gokce et al. [89] .
he simulation of the system was presented, and the results were out-
tanding. Wenhua et al. [90] have presented agriculture extra-green im-
ge segmentation based on PSO and K-means clustering. The same kind
f problem is also addressed by Shi et al. [91] . In that work, the complex
nvironment of the cotton field has been studied using PSO and K-means
lustering for the cotton picker robot. Weikuan et al. [92] have used the
SO algorithm and De-noising algorithm to remove the noise from night
ision images of the apple taken by an apple harvesting robot. Many re-
earchers have developed the hybrid approach of PSO with other AI
echniques to get more benefits and make the system more efficient. In
his regard, Li et al. [93] have come up with the hybrid approach of PSO
nd GA for the path planning of multiple UAVs. The proposed hybrid
ath planning approach aims to minimize the time required to cover
he field in doing various agriculture operations such as field inspec-
ion, crop health monitoring, and automated spraying of pesticides. 

Deep learning models have many advantages over other traditional
odels. Mythili et al. [94] have presented the modified DNN and PSO

or crop recommendations in the cultivation phase. They used climate
ata and past crop production data in this work. The PSO-MDNN model
as very effective in recommending an appropriate crop. The compar-

son of an approach based on PSO and GA presented by Mahmud et al.
74] to solve the agriculture robot routine problem by their invention.
n this, the agriculture robot has been tested for spraying operations
5 
n the greenhouse. One more work on UAVs using the PSO-FL-NN hy-
rid approach for monitoring the rice farm is presented by Camci et al.
34] . In their work, the whole mechanism is dedicated to analyzing the
uality inspection of rice crops. Chaudhary et al. [95] have presented
 new PSO algorithm named Ensemble PSO for crop disease identifi-
ation. The results of Ensemble PSO are very impressive. The applica-
ion of PSO as an optimization tool helps in decision-making. Ji et al.
96] have demonstrated their work on recognizing green pepper in the
reenhouse. The method is based on the least-squares support vector
achine, which is optimized for better performance with PSO. They
ave given the input of processed green pepper’s shape, and texture
eatures to PSO to get better and perfect green pepper parameters. Sim-
larly, Zou et al. [97] have used the PSO AI technique to optimize the
upport vector machine (SVM) classification and disease identification
ate. The results under natural background were very effective. Fur-
hermore, Anam et al. [98] have also worked on apple plant’s leaf spot
isease segmentation optimization using the PSO AI technique, and K
eans algorithms. With these systems, farmers can produce more and

arn more. The seedling mechanism plays an essential role in the culti-
ation phase to plant each crop in a particular pattern and reduce the
ame waste. The optimization and improvement of the design of a wheat
entralized seed deeding device based on PSO are presented by Wang
t al. [99] . Various seed and feeding device parameters were considered.
hey verified the results by simulation as well as by field test. In order to
tratify the water requirements of the crop in all three phases of a crop
rowth cycle, Bulbul et al. [100] have worked on irrigation optimiz-
ng scheduling systems using PSO. The system optimizes as per the crop
ype. 

.5. Artificial potential field 

The APF method is used in a real-time application for the better and
asiest way for planning to resolve problems. The APF method is in-
pired by electric charge field generation. The Potential Field method
as introduced by Khatib [101] in 1985. He considered that a point in

he workspace is affected by the field generation from obstacles and the
oal. As per his research, the obstacle has high potential. They behave
ike a positive charge repeals the attractive point (robot), which is con-
idered a positive charge, and the targeted position has low potential.
hey behave like negative charges to attract. The use of this method is
bserved to a more considerable for the path planning of the agriculture
obot. 

Longo et al. [102] have presented their work on the navigation of
griculture robots in vineyards. To achieve this, APF and a laser range
nder, and GPS are implemented on a robot. Similar to this work,
ther authors such as Harik et al. [103] and Hou et al. [104] also used
he autonomous vehicle by using APF for farmland work. Cheng et al.
105] have focused their work on harvesting robots. In his approach, the
PF approach is implemented on a manipulator to perform the picking
peration of an apple. Xie et al. [106] have also presented APF method-
logy for apple-picking path planning, but results are tested only in
he simulation environment. Similarly, Nemlekar et al. [107] have pre-
ented APF powered robotic arm for picking lime. They have used APF
o reduce the time of finding low-cost paths to the destination (lime). In
rder to develop a mobile platform for environmental monitoring and
anagement, Martinovic et al. [108] have incorporated sensor-based

echnology with APF. In the proposed work, the greenhouse microcli-
atic environment is controlled using a mobile measuring environment.

ihong et al. [71] have provided the APF-GA-based compering approach
o address a seeding machine’s path planning in agriculture applica-
ions. The APF method is mixed with other AI techniques to develop
ybrid approaches, Tiexin et al. [109] have developed a hybrid APF-
CO approach for path planning of agriculture robots. The application
f APF in UAVs for path planning and inspections of crops is shown by
ingkun [110] . 
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.6. Simulated annealing 

The SA is known as the global optimization AI technique, which
elps in solving large complex optimization problems. The SA is inspired
y analogy due to its capacity to work on physical annealing and solids.
he SA algorithm was introduced by S. Kirkpatrick [111] in 1983. This
A is known as the probabilistic technique as it focuses on the heat treat-
ent methods and the changes happening in the metal because of heat

reatment. The metal in the heat bath is taken to the highest tempera-
ure, where it starts transforming from a solid to a liquid phase. Here
he particle takes random positions in the liquid phase. After that, it
ools down slowly and gradually reduces the temperature of the heat
ath. All the random positions were taken by particles arranged in such
 way that they would be in a low-ground energy state ( Fig. 12 ). 

In the agriculture field, the major application of SA has been seen
or the motion planning of autonomous agriculture vehicles. Ferentinos
t al. [112] have proposed a model to solve the real challenges of the
griculture field by using the SA. They compared the performance of
A with GA. It is observed that the SA gives a better solution related to
he problem of multiple path planning [113] in agriculture farm con-
itions, and route planning of multiple agricultural vehicles [114] is
ddressed by various researchers using SA. Whereas in the cultivation
hase, to optimize aerating (agricultural machinery used to lose the soil)
erformance on salt-affected agricultural lands, Zhang et al. [115] have
esigned and developed a five-bar aerating mechanism. They have used
A to optimize various working parameters. The application of SA as an
fficient monitoring technique is introduced by Andersen et al. [116] .
hey have improved the traditional method of monitoring using SA with
 stereo vision to get a perfect estimation of plant properties. Weed
nd pest controls are critical issues in agriculture. Gonzalez-De-Santos
t al. [117] have addressed such problems in agriculture using UAV and
GV. The planning strategies in the software are developed by using
A. The water irrigation system has a critical role in agriculture. Hence,
he problem of optimal on-farm irrigation scheduling using SA has been
roposed by Brown et al. [118] and Perez-Sanchez et al. [119] . Cong
t al. [120] have worked on designing the scheduling model with the
elp of SA for agricultural tractors to work efficiently in a particular
rea. They have considered many factors, such as farmland area, agri-
ultural machinery, etc., and found that the SA model is more efficient
han other AI techniques, such as GA. Similarly, the harvesting activity
cheduling model using SA and GA is presented by Qingkai et al. [121] .
he model was very stable and effective in performance. 

.7. Ant colony optimization 

The study on ants has concluded that ants have a natural vision sys-
em like other insects. However, they plan their way very efficiently by
ptimizing the complexity of the real world. The ACO algorithm is help-
ng many real-world problems to get optimum. An ACO algorithm is a
etaheuristic algorithm used as an optimization tool. ACO was intro-
uced by Marco Dorigo on the way back in 1992 [122] . The algorithm
orks on the thinking and idea of ants taking the shortest possible solu-

ion. Ants are very brave in making decisions, such as shown in Fig. 14 .
henever they target the food, they plan their way to be short of their

tarting location. Every ant has a natural ability to secrete on the ground
he biological substance known as a pheromone, which is the signal to
e followed by others as a pathway. In this way, they guide each other
o find and follow the shortest path. ACO is one of the advanced swarm
ntelligence algorithms, and therefore it is now adopted in the field of
griculture engineering. 

The implementation of the ACO algorithm is increasing day by day
n agricultural practices. The operation of route planning of the agricul-
ure field using ACO is presented by Bakhtiari et al. [123] . Furthermore,
ao et al. [124] studied the management of agriculture machinery and
roposed an ACO model to perform efficient task management. They
ave performed simulation experiments for dynamic and static task as-
6 
ignments. The aim of both the study is to decrease the operational cost
equired in the agriculture sector. The agriculture robot is one of the
ssential pieces of equipment nowadays for improving the performance
f various agricultural processes. The path planning of such a robot by
sing the ACO algorithm is presented by Zhou et al. [125] . They have
emonstrated the path planning of the robot using ACO in the presence
f an obstacle. The main aim of the proposed work is to save time as
ell as the cost of farming operations. Jiang et al. [126] compared the
CO’s performance with the GA and standard sequence method (CSM)

or replugging tour planning of seedling transplanter, and it is observed
hat the ACO gives better results when compared to GA and CSM. The
pplication of ACO for UAVs is presented for agriculture purposes by
ang et al. [127] . This work proposed that the path planning approach

s developed for UAVs to take maximum information quickly by using
CO. An intelligent UAV irritation system that implements an ACO al-
orithm to find the optimal path is developed by Gao et al. [128] . The
roposed algorithm had very efficient results. To increase the perfor-
ance of agriculture robots in path planning, the hybrid ACO- APF ap-
roach is presented by Tiexin et al. [109] . On the adoption of the hybrid
pproach, performance improvement has been observed as compared to
tandalone ACO. The application of ACO as an optimizer in the crop rec-
mmendations system is presented by Mythili et al. [129] . The ACO is
sed to optimize network inputs and the complexity of training weights
f the crop recommendations system. 

.8. Artificial bee colony algorithm 

The ABC algorithm is one of the best-developed swarm intelligence
pproaches for solving multiple complex problems. It is a metaheuris-
ic algorithm used as an intelligent combinatorial tool. The algorithm
as inspired by the intelligent behavior of honeybees in haunting their
ay for food with proper communication and dedicated teamwork. The
BC algorithm was introduced by Dervis Kharaboga [130] in 2005 to
olve complex real-world problems. The colony of honeybees has three
ypes of bees named employed bees, onlookers, and scout’s bees. All of
hem have some jobs, which helps them collect food intelligently in less
ime. The employed bee visits the food sources, looks for the status of
he source, and saves the same information ( Fig. 16 ). After completing
he finding process, they inform the bee waiting in the dance area by
aggle dance. The bee waiting in the dance area, known as onlooker
ees, analyses the food sources by understanding the waggle dance of
mployed bees and selecting the food source compared to the initial one.
f they identify the food source as of no use, then the onlooker bees send
cout bees to find new food sources. 

Selvakumar et al. [131] have presented an intelligent system for the
arlic advisory system. They have also compared a rule-based algorithm
nd found that implementing the ABC algorithm is better and more ef-
ective. The advisory system is a web-based application with an ABC
lgorithm and machine learning. Land planning and preparation play
n essential role in any crop growth cycle. Bijandi et al. [132] have
resented a model based on the ABC algorithm to improve land par-
itioning. They have considered the results on the irrigation efficiency
nd found the layouts obtained from the model to be more effective.
he use of wireless sensors in the agricultural sector to monitor crops is

ncreasing, and so is the data. Sathish et al. [133] have worked on opti-
izing the data aggregation of these sensors using the ABC. They found

ut the ABC is more efficient than GA. The application of the ABC algo-
ithm for fruit image recognition is presented by Li et al. [134] . In their
ork, the machine vision system with ABC has been implemented for

he recognition of fruit, and results are demonstrated using simulations.
avigating agriculture vehicles is a challenging issue in farm conditions;
ence to avoid the error in accuracy, Kumar et al. [135] have presented
 comprehensive Kalman-filter-based ABC approach for dynamic turn-
ng issues. The authors also worked on the precise positioning of UAVs
sing ABC and GPS for additional effort in monitoring and inspection of
rops [136] . 
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.9. Harmony search 

Musical notes inspire the HS algorithm, and it was introduced
y Geem et al. [137] in 2001. The HS algorithm is a metaheuristic al-
orithm based on audio processing with a set of rules for optimizing
he effects of errors for better decision output. Audio processing deals
ith pitch level control for one specific harmony as output. The perfect
udio pitch is stored, and the experience is used to create perfect har-
ony in the coming time. The algorithm selects the perfect solutions

rom all the available information and experience for the ideal problem
ptimization. 

Mandal et al. [138] have presented a prediction model based on the
S algorithm of mustard plant productivity. To overcome the challenge
f predicting the crop life cycle to find its yield has been undertaken in
his paper. They had input as a short length of the crop. Also, they have
ompared the approach with other AI algorithms for performance eval-
ation. Valente et al. [139] have proposed a new approach using HS for
erial coverage optimization in precision engineering management. The
S results were compared with an approach based on a wavefront plan-
er, and they found the results of HS are better for optimizing routes
nd time. The hybrid approach of HS and NN is addressed in precision
griculture by Sabzi et al. [140] . The developed approach using a vi-
ion system is used for weed identification in potato crops. Similarly,
ourdarbani et al. [141] and Sabzi et al. [142] have also developed a
ybrid approach using HS-NN to recognize fruits in garden conditions
nd orchard environments. 

.10. Bat algorithm 

BA is a metaheuristic algorithm used as an optimization tool based
n swarm intelligence. It was introduced by Yang [143] in 2010. A BA
s inspired by the microbats to find their path with echolocation. Mi-
robats are very small; being so small, they produce substantial sound
aves and hear back the echo that is reflected from the assumed ob-

ects such as prey or food. Every bat uses a random path and velocity to
nd the assumed thing while emitting different varying frequencies and
avelengths. The distance to reach the object is also calculated by the
at in seconds. They can control all the above parameters based on their
oal. The ability to control and assist frequency is called frequency tun-
ng. So, the BA is sometimes called a frequency-tuning algorithm also. 

There are very few papers that provide the application of the BA in
gricultural processes. The application of BA in crop image classifica-
ion is provided by Senthilnath et al. [144] to monitor crops efficiently.
oreover, understanding the plant’s needs is very important in the mon-

toring phase of any crop growth cycle. One of the essential parameters is
ater stress. Azimi et al. [145] have used two data sets of plant shoot im-
ges taken from different moisture conditions and used a BA-optimized
odel to get the optimal values of water stress classification. They found

hat BA has very accurate results as compared with traditional methods.
urther, Yaseen et al. [146] have explored the problem of water irriga-
ion and have presented a hybrid BA-PSO AI technique for optimization.
n agriculture, pipe network planning is very much important. Accord-
ngly, Lyu et al. [147] have demonstrated the tree-type irrigation system
sing improved BA. 

.11. Cell decomposition 

It is one of the oldest methods especially used for the path planning of
utomated devices. The process of cell formation inspires it. The method
akes a free area and allots a cell to that free area in the workspace.
hese allotted cells then form a path to reach the destination, which is
epresented by a contacting graph. If there are any obstacles, those cells
re further divided into two sub-free compartments in that area, which
gain get added to all free cells to reach a goal in minimum time. CD
s very effective with a modern algorithm for optimizing the problems,
specially for the vehicles used in agriculture. 
7 
Linker et al. [148] have presented their study on the navigation
lanning of agricultural vehicles in the orchard environment. The nav-
gation approach is based on a modified CD and A 

∗ algorithm. The
ork was shown for shortest path planning and to take care of soil

ompaction. The same work using CD and D 

∗ Lite algorithm is pro-
osed for robot path planning for the oil palm plantation environ-
ent by Juman et al. [149] . Apart from this, the application of CD

nd A 

∗ for robot path planning to save power and effective use is
rovided by Santos et al. [150] . One more path-planning approach to
void more soil compaction is presented in [151] . In this approach, the
trategy is developed using CD and A 

∗ to make multiple path strate-
ies to avoid soil compaction because of repeated movement of the
ehicle. 

.12. Firefly algorithm 

The development of the firefly algorithm is based on the firefly’s
ehavior. The idea was proposed by Yang [152] in 2008 as a newly
nspired natural metaheuristic algorithm. It is a modern natural meta-
euristic algorithm. The behavior of fireflies, as they have light-emitting
ower, they hunt the food by this light such that the blinking of light in
uch a pattern so that the food/prey get attracted towards them. Also,
hey use it to communicate with their friends in their group. The firefly
s brilliant in protecting and uses the blinking of light as a signal for
rotection. The male-female connection is also made with the blinking
f light in a specific pattern. Even the female firefly uses this advantage
o hunt other species. Communication and food-finding are based on
linking light intensity. The firefly algorithm is a beneficial technique
o optimize a very complex problem such as agriculture management. 

The agricultural sector is dependent on the irrigation system. Hos-
eini et al. [153] have worked on optimizing the operation of a reser-
oir for agricultural water supply. They have used the firefly algorithm
ith the objective function based on demands and supply of water. The

esults found by them were much better than those by using GA and
SO. Similar work was presented by Wang et al. [154] with NDFA (new
ynamic FA). Garousi-Nejad et al. [155] have implemented FA as an
ptimization tool for irrigation supply and hydropower generation man-
gement to improve farmers’ income. 

. Discussions 

The proposed review paper provides an in-depth analysis of more
han 150 papers on the contribution of intelligent techniques and de-
ices in the agriculture field. The literature on the agriculture field is
lassified into three important phases: cultivation, monitoring, and har-
esting ( Table 2 ). The cultivation phase deals with the selection of crops
o be planted, planning of land, land preparation, irrigation planning,
eed preparation, and seed sowing. After the cultivation phase, the main
ask of farming is to monitor and control the growth of the crops. In this
onitoring phase, the activities are dependent on time, such as sched-
led crop health monitoring, fertilizers use, disease identification, weed
dentification, and pesticide spraying. At last, the most crucial phase of
he crop cycle is the harvesting phase which includes the activities such
s crop cutting, segmentation, storing, and selling to the market. All
hese phases were studied under the influence of AI techniques such as
L, ANN, GA, PSO, ACO, FA, BA, APF, ABC, HS, CD, and SA. Although
here are various AI techniques available, only a few AI techniques have
een shortlisted based on their popularity in agriculture activities and
pplications. From the literature review, significant progress is noticed
n crop production, quality of food, farmer’s income growth, plant care,
eduction in manpower, inspection, and monitoring of farms, and se-
ective harvesting by using AI and modern tools. In some indoor appli-
ations, AI plays a vital role in automatically controlling temperature,
umidity, light, fertilization, and phytosanitary treatments. The com-
ercial robot with AI implementation can be used in dealing with the
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hole process of agriculture, from planting to packaging. All these ad-
antages of AI over traditional methods improve the technical and eco-
omic efficiency of farming. A remarkable change has been observed in
odern agriculture in improving the health and safety concerns of the

armers. 
The proposed paper presents a well-organized study of various avail-

ble research papers in which AI is implemented in the agriculture field.
rom the deep study of more than seven hundred papers, we have con-
idered more than 150 research papers for writing reviews on the con-
ribution of AI in the area of agriculture. All the used papers have been
lassified (like FL, ANN, GA, PSO, ACO, FA, BA, APF, ABC, HS, CD, and
A) and sequenced properly in Table 1 , as per the publication year to
nderstand the development of AI in agriculture. In Table 1 , the exami-
ation is done in several categories, such as simulation work, experimen-
al work, hybrid approach, various phases (cultivation, monitoring, har-
esting), path planning, and usage of agriculture robots. Fig. 21 shows
he number of papers available on 12 individual techniques and the fre-
uency of these techniques used in the field of agriculture. It is clear
rom the figure that the implementation of FL, ANN, and GA is more
ommon than other AI techniques. The techniques such as PSO, APF,
A, ACO, ABC, HS, BA, CD, and FA have limited papers in the agricul-
ure field. Therefore, an enormous scope is there to work on these tech-
iques for future advancement in agriculture. Fig. 22 shows that nearly
2% of work is done on the path planning of agriculture robots, 31%
n monitoring, 19% on cultivation, and 18% on harvesting. It is crystal
lear that the use of AI techniques is more common for path planning
f agriculture robots followed by monitoring applications, and it also
ighlights the phases such as harvesting and cultivation where more
mprovement is much needed. In a comparison of experimental and sim-
lation work done in agriculture ( Fig. 23 ), it is noticed that 46% of the
ork is presented using simulation, and only 54% of the work is done

xperimentally. This exposes that there is still a need for conversion of
imulation work to experimental work in various agriculture domains.
n a comparison of the standalone AI approach with the hybrid AI ap-
roach from Fig. 24 , it is examined that the standalone techniques are
ore common. Nearly 78% of the papers are available on standalone

pproaches and 22% on hybrid approaches. So, one should think about
eveloping hybrid approaches to make a more optimized and efficient
pproach. 

The number of papers available on individual techniques to address
pplications in the cultivation, monitoring, harvesting, and path plan-
ing of agriculture robots is shown in Fig. 25 - 36 . From the given bar
harts, we can analyze that FL is the most preferred AI technique to
olve agricultural problems, followed by GA and ANN. Very few of the
echniques, such as FL and GA, are used more in all the phases of agricul-
ure and path planning agriculture robots, followed by ABC, ACO, PSO,
nd SA. A more significant number of papers for the cultivation phase
s addressed using FL, GA followed by PSO, and SA; in the monitoring
nd harvesting phases, ANN followed FL, and PSO is much preferred by
arious researchers. The application of AI to path planning of agricul-
ure robots is carried out majorly using GA, followed by FL. As per the
esearch concern, there are no papers available on the cultivation phase
sing ANN, APF, and HS. The same case is observed using CD and FA,
s there is no work mentioned in the monitoring phase. Similarly, the
I techniques such as BA, CD, and FA have no more work available in

he harvesting phase. From the graphical analysis of all techniques, one
hing is very clear: the application to path planning of agriculture robots
s addressed by all the mentioned techniques except BA and FA. The
abular and graphical data mentioned in the review paper clearly shows
hat the AI techniques such as PSO, APF, SA, ACO, ABC, HS, BA, CD, and
A need more attention to solving agriculture issues. These techniques
an be upgraded by hybridizing with FL, ANN, and GA to get more no-
iceable results. This may be the future research gap in the field of agri-
ulture for performance enhancement and technological development.
urther, the work must focus more on developing more experimental
ork than market-ready techniques. From the analysis of Fig. 37 , the
8 
pplication of robots in the monitoring phase is highlighted by 43% of
ork, followed by 38% in the harvesting phase and only 19% in the

ultivation phase. More development of agriculture robots is needed in
he cultivation phase. From Fig. 38 , it is clear that the application of
L (21), GA (16), and ANN (16) to the development of AI-based agri-
ultural robots is significant, and the application of APF, SA, CD, PSO,
CO, ABC, and HS is significantly less. No papers highlight the applica-

ion of BA and FA to the development of AI-based agricultural robots.
here will be a need to develop robots for all phases with the fusion of
arious advanced AI techniques and modern technology in the coming
ime. 

From the study, we can analyze that the contribution of FL, NN, and
A is very significant. Out of 148 research papers, 31 research papers
ighlight the contribution of the FL to agriculture. In the late ’90s, the
mplementation of FL was only seen for the monitoring phase and the
mprovement of robotics technology. Later on, from the 20 ′ s, FL con-
ributed significantly to agricultural robotics technology to solve various
gricultural robot navigation and control planning problems. The UAVs
ave been developed and optimized with the help of FL to monitor the
rops’ health and take necessary control actions. The recent develop-
ent of FL also can be seen in the cultivations phase. FL-based crop-

ecommended systems and crop production planning are very much
opular now a day. Along with the time, the FL is significantly used
n the harvesting phase, especially for fruit, lettuce plants, and tomato
arvesting. It is observed that the available research on FL contributes
ore towards the monitoring phase as compared to harvesting and cul-

ivation. 
The NN is one of the popular AI techniques used for various agri-

ulture processes. Out of 148 referred papers, 29 research papers are
ontributing to various agricultural applications, especially in the mon-
toring phase. In the late 90 s, the application of NN was focused on mon-
toring phase activities such as checking maturity, greenhouse monitor-
ng, and crop and weed classification. The implementation of NN from
he 20 ′ s, is not only seen in the monitoring phase but also in the har-
esting phase. Vision-based navigation using NN is one such example of
aking intelligent robots for smart farming. The segmentation, classifi-

ation, and mapping applications are the more significant functions of
he NN that are now implemented on agricultural robots and various in-
elligent equipment of farming. Deep learning algorithms such as deep
onvolutional neural networks and region-based convolutional neural
etworks are very common for solving agricultural crop classification
roblems. The deep learning model named as long short-term memory
s also found to be in forecasting low-temperature zones. The develop-
ent of NN and deep learning models have significantly contributed

o solving the problem associated with the monitoring and harvesting
hase activities. Many of the deep learning models are majorly imple-
ented on agriculture robots to perform precise agricultural activities.
he contribution of NN and deep learning models are not seen in the cul-
ivations phase activities, and it is one of the areas where more attention
s required. 

Similarly, GA has been widely accepted for the development of over-
ll agriculture activities from cultivation to monitoring and monitoring
o harvesting. Among 148 research papers, 24 research papers are cited
or the contribution of GA in smart farming. Like NN, the contribution of
A is also seen to be remarkably less before the 90 s. The primary appli-
ation in those times was only for crop care activities and path planning
f agricultural robots. With the development of modern technology and
I, the applications of GA for the development of agriculture robots have
een extraordinary since the 20 ′ s. GA has been found to be very efficient
or various agricultural activities and the associated problems such as
ath planning, precision fruit picking, spraying, classification, segmen-
ation, and many more. The GA has also contributed to the optimization
roblems such as irrigation pump benchmark optimization, nutrient for-
ula optimization, and recommendation. However, the number of pa-
ers addressing the implementation of GA is less in all three phases of
he crop growth cycle compared to FL and NN. 
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Table 1 

Analysis of research paper according to the publication year. 

References Year 

Simulation 

Work 

Experimental 

Work 

Hybrid 

methods 

used 

Robots 

Used 

Problems Addressed 

Cultivation 

Phase 

Monitoring 

Phase 

Harvesting 

Phase 

Path 

planning Application 

Fuzzy Logic 

[10] 1991 Yes Yes No 
√ √

Carnation seedling recognizing 
[29] 1998 No Yes FL-NN-GA 

√
Greenhouse automation 

[30] 1998 Yes Yes FL- GA 
√

Crop and weed classification for precision 
farming 

[12] 1998 Yes No FL-CMA 
√ √

To control agricultural robots 
[13] 1998 No Yes No 

√ √
Harvesting control to reduce efforts 

[23] 1999 Yes Yes No 
√

Fast operations of spraying 
[21] 1999 Yes Yes No 

√ √
Steering control of agricultural robots 

[31] 1999 No Yes FL-GA 
√ √ √ √ √

Navigation based on crop lining 
[32] 2000 Yes Yes FL-GA 

√ √
Spraying in orchard 

[14] 2000 No Yes No 
√ √

Fruit harvesting 
[15] 2002 No Yes No 

√ √
Lettuce plants harvesting 

[33] 2002 No Yes FL-GA 
√ √

Robot for sustainable agriculture 
[16] 2012 Yes Yes No 

√ √
Navigation through crops row 

[26] 2012 Yes No No 
√ √

Agricultural robot control 
[17] 2012 Yes No No 

√ √
Steering control action 

[20] 2012 Yes No No 
√ √

Navigation through crops row 

[18] 2013 Yes Yes No 
√ √

Steering control action 
[24] 2014 No Yes No 

√ √
Navigation of agricultural robot 

[22] 2015 Yes No No 
√ √

Agricultural UAV pesticide spraying 
[25] 2018 No Yes No 

√ √ √ √
Multipurpose agricultural robot 

[34] 2018 Yes No FL-ANN 
√ √ √

Agricultural UAV controllers 
[19] 2019 Yes No No 

√ √
Agricultural mobile robot modeling and control 

[28] 2020 Yes No FL 
√ √

Agricultural UAV aerial images optimization 
[27] 2020 Yes No No 

√ √ √ √
Agriculture manipulator vibration control 

[35] 2020 Yes No No 
√

Vegetable crop yield estimation 
[37] 2020 Yes No No 

√ √
Soil fertilizer recommendation system 

[38] 2020 Yes Yes No 
√ √

Sugarcane crop needs a recommendation 
system 

[39] 2021 No Yes No 
√ √

Irrigation forecasting system 

[36] 2021 Yes Yes No 
√ √

Agriculture yield predication system and crop 
needs recommendation system 

[9] 2021 Yes No No 
√

Analyzing the effects of climate change 
[11] 2021 Yes Yes No 

√
Picking mature tomatoes 

Total 31 22 19 7 21 10 14 6 13 

Artificial Neural network 

[40] 1994 Yes Yes No 
√

Predicting flowering and checking the maturity 
of soybean crops 

[29] 1998 Yes Yes NN-FL-GA 
√

Greenhouse automation 
[30] 1998 Yes Yes NN-FL-GA 

√
Crop and weed classification 

[15] 2002 No Yes No 
√ √

Crop and weed classification 
[47] 2007 No Yes No 

√
New method to calibrate the vision system 

[56] 2009 No Yes No 
√ √

Segmentation of JSEG-based image for 
navigation 

[57] 2010 No Yes No 
√ √

On-path recognition method for a mobile 
agricultural robot in a shadow environment 

[48] 2011 No Yes No 
√ √

Navigation of agricultural robot 
[41] 2016 No Yes No 

√
Plant identification for easy weed control 

[50] 2017 No Yes No 
√ √

Weed monitoring and identification 
[51] 2017 No Yes No 

√ √
Weed monitoring and identification 

[42] 2017 Yes Yes ANN-GA 
√

Segmentation of grapes 
[44] 2017 No Yes No 

√
Sorting pomegranate fruits 

[45] 2017 No Yes No 
√

To identify the unwanted plant 
[43] 2018 No Yes ANN-GA 

√ √
To recognition of apples in an orchard 
environment 

[53] 2018 No Yes No 
√ √

UAV weed mapping 
[54] 2018 No Yes No 

√ √
Identification of greenhouse strawberries as 
mature or immature 

[55] 2019 No Yes No 
√ √

Harvesting of strawberries 
[52] 2020 No Yes No 

√ √
Segmentation and identifying each plant 
parameter 

[49] 2020 Yes Yes No 
√

Analyzing complex plants 
[46] 2020 No Yes No 

√
Sorting of garlic 

[58] 2020 No Yes No 
√ √

Plant disease diagnosis 
[65] 2020 No Yes No 

√ √
Fruits classification system 

[62] 2020 No Yes No 
√

Predication crop frost 
[59] 2021 No Yes No 

√
Pest classification and identification 

[64] 2021 No Yes No 
√ √

Spraying land recognition 
[60] 2021 No Yes No 

√ √
Crop- weed detection 

[61] 2021 No Yes No 
√ √

Weed detection and control 
[63] 2021 No Yes No 

√ √ √
Mapping potato plants 

Total 29 5 29 4 16 0 19 8 4 

( continued on next page ) 
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Table 1 ( continued ) 

References Year Simulation 

Work 

Experimental 

Work 

Hybrid 

methods 

used 

Robots 

Used 

Problems Addressed 

Cultivation 

Phase 

Monitoring 

Phase 

Harvesting 

Phase 

Path 

planning 

Application 

Genetic algorithm 

[73] 1997 Yes No NN-GA 
√ √

Path planning of agricultural robot 
[30] 1998 Yes Yes GA-FL 

√
Crop and weed classification 

[67] 1999 Yes Yes No 
√ √

Motion planning system 

[32] 2000 Yes Yes FL-GA 
√

Spraying in orchard 
[68] 2000 Yes Yes No 

√ √
Hexapod walking agricultural robot 

[69] 2002 No Yes No 
√ √

Motion planning of agricultural robot 
[70] 2007 Yes No No 

√ √
Path planning of agricultural robot 

[78] 2008 Yes Yes No 
√ √

Vision navigation with crop row recognition 
[80] 2009 No Yes No 

√ √
Potatoes classification based on defect and 
disease 

[75] 2012 No Yes No 
√ √

Multi-path planning robot to reduce time and 
cost 

[71] 2016 No Yes No 
√ √ √

Navigation of seedling machines 
[84] 2017 Yes Yes No 

√ √
Apple harvesting 

[72] 2017 Yes No No 
√ √

Agricultural UAV motion planning 
[42] 2017 Yes Yes GA-ANN 

√
Segmentation of grapes 

[87] 2017 Yes Yes No 
√

Transplanter in the greenhouse 
[85] 2017 Yes No No 

√ √
Precision watermelon-picking robot 

[83] 2017 Yes Yes No 
√

Selection of power system for irrigation 
[74] 2018 Yes No No 

√ √
To get the shortest path for an agricultural 
robot 

[79] 2018 No Yes No 
√ √

Crop line following the navigation system of an 
agricultural robot 

[82] 2020 No Yes No 
√

To optimize the benchmark of PV pumps for 
real farm 

[86] 2020 No Yes No 
√ √ √

Picking agricus mushrooms using three arms 
[76] 2020 Yes No No 

√ √ √
UAV trajectory planning 

[77] 2021 Yes No No 
√ √ √

Path planning of electric tractors 
[81] 2021 No Yes No 

√ √
Nutrient solution formula for cucumber crop 

Total 24 16 17 4 16 6 5 5 14 

Particle Swarm Optimization 

[90] 2009 No Yes No 
√ √

Extra green image segmentation 
[91] 2013 No Yes No 

√
Cotton image segmentation 

[92] 2015 No Yes No 
√ √

Apple image noise reduction for harvesting 
[93] 2016 Yes No GA -PSO 

√ √ √
Agricultural UAVs path planning 

[74] 2018 Yes No No 
√ √ √

Path planning of agricultural robot for 
automated spraying 

[34] 2018 Yes No PSO-FL-ANN 
√ √ √

Agricultural UAV control 
[96] 2019 Yes No NO 

√
Recognition of green pepper 

[95] 2020 No Yes No 
√

Disease Identification system 

[97] 2020 No Yes No 
√

Disease Identification system 

[98] 2020 No Yes No 
√

Disease Identification system 

[99] 2020 Yes Yes No 
√

Seed feeding 
[94] 2021 Yes No PSO-MDNN 

√
Crop recommendations system 

[100] 2021 Yes No No 
√ √ √

Irrigation scheduling system 

[89] 2021 Yes No No 
√ √ √ √ √

PID Controller for agricultural robot 
Total 14 8 7 3 5 4 9 6 4 

Artificial Potential Field 

[102] 2010 Yes Yes No 
√ √

Navigation in vineyard 
[105] 2012 Yes Yes No 

√ √
Apple picking manipulator 

[108] 2014 No No No 
√ √

Mobile measuring system navigation 
[71] 2016 No Yes No 

√ √
Navigation of seedling machines 

[109] 2016 Yes No APF-ACO 
√ √

Path planning of agricultural robot 
[110] 2018 Yes No No 

√ √
Path planning of agricultural UAV 

[103] 2018 Yes Yes No 
√ √

Navigation in greenhouse 
[104] 2018 Yes No No 

√ √
Unmanned tractor motion planning 

[106] 2019 Yes No No 
√ √ √

Apple picking path planning 
[107] 2021 Yes Yes APF- RRT ∗ 

√ √ √
Harvesting limes 

Total 10 8 5 2 9 0 1 3 9 

Simulated annealing 

[112] 2000 Yes Yes No 
√ √

Path planning of agricultural vehicles 
[116] 2005 Yes Yes No 

√
Perfect estimation of plant properties 

[118] 2010 No Yes No 
√

Irrigation scheduling 
[113] 2015 Yes No No 

√ √
Multi-path planning of agricultural vehicles 

[114] 2016 Yes No No 
√ √

Route planning of agricultural vehicles 
[117] 2017 Yes No SA-GA 

√ √
Weed and Pest control robot 

[119] 2018 Yes No No 
√

Irrigation scheduling 
[120] 2021 Yes Yes No 

√
Agriculture machines tasks scheduling 

[121] 2021 Yes No SA-GA 
√

Agriculture machines tasks scheduling 
[115] 2021 Yes Yes No 

√
Optimizing aerator performance 

Total 10 9 5 2 4 4 2 1 3 

( continued on next page ) 
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Table 1 ( continued ) 

References Year Simulation 

Work 

Experimental 

Work 

Hybrid 

methods 

used 

Robots 

Used 

Problems Addressed 

Cultivation 

Phase 

Monitoring 

Phase 

Harvesting 

Phase 

Path 

planning 

Application 

Ant Colony Optimization 

[123] 2012 No Yes No 
√

Route planning 
[125] 2014 Yes Yes No 

√
Path planning to save cost and energy 

[126] 2015 Yes Yes No 
√

Replugging of the seedling transplanter 
[127] 2016 Yes No No 

√ √ √
Routing planning of UAVs for taking farm 

information 
[109] 2016 Yes No ACO-PFM 

√ √
Path planning of agricultural robot 

[128] 2021 Yes No No 
√ √ √

Intelligent UAV based irrigation planning 
[129] 2021 No Yes ACO- 

IDCNN- 
LSTM 

√
Crop recommendations system 

[124] 2021 Yes No No 
√ √ √

Agriculture machines tasks management 
Total 8 6 4 2 4 3 1 1 6 

Artificial Bee Colony algorithm 

[131] 2011 No Yes No 
√

Garlic separation system 

[134] 2012 Yes No No 
√

Fruit image recognition 
[135] 2016 Yes Yes No 

√ √
Positioning system for agricultural vehicles 

[136] 2018 Yes No No 
√ √

Agricultural UAV positioning 
[133] 2021 No Yes No 

√
Efficient monitoring of crops 

[132] 2021 No Yes No 
√

Land partitioning 
Total 6 3 4 0 2 1 2 1 2 

Harmony Search 

[138] 2012 No Yes No 
√

Prediction of crop growth 
[139] 2013 Yes No No 

√ √
Agricultural UAVs coverage optimization 

[140] 2018 Yes Yes NN –HS 
√ √

For weed identification in a potato crops field 
[141] 2019 Yes Yes HS-ANN 

√ √
Recognition of plum fruits 

[142] 2020 No Yes ANN –HS 
√ √

Identifying fruits in the orchard environment 
Total 5 3 4 3 2 0 3 3 1 

Bat algorithm 

[144] 2016 Yes No No 
√

Crop images classification 
[146] 2019 No Yes BA-PSO 

√
Optimizing dam and reservoir problems 

[147] 2019 No Yes No 
√

Irrigation pipe network planning 
[145] 2021 No Yes No 

√
Monitoring water stress in plants 

Total 4 1 3 1 0 2 2 0 0 

Cell Decomposition 

[148] 2008 Yes No CD-A ∗ 
√ √

Navigation planning of agricultural vehicles 
[149] 2017 Yes Yes CD-D ∗ Lite 

√ √ √
Path planning of a robot for the oil palm 

plantation 
[150] 2017 Yes No CD-A ∗ 

√ √
Path planning of agricultural robot to work 
efficiently 

[151] 2018 Yes No CD-A ∗ 
√ √

Multiple path planning 
Total 4 4 1 4 4 1 0 0 4 

Firefly Algorithm 

[153] 2014 No Yes No 
√

Irrigation supply and demands 
[155] 2016 No Yes No 

√
Irrigation supply and demands 

[154] 2018 No Yes No 
√

Irrigation supply and hydropower generation 
Total 3 0 3 0 0 3 0 0 0 

Grand total 148 85 101 32 82 34 58 34 60 

Table 2 

Papers reviewed per phase. 

Cultivation Phase Monitoring Phase Harvesting Phase 

[10] [31] [25] [27] [35] [37] [38] [39] [36] [9] 
[71] [87] [83] [82] [77] [81] [99] [94] 
[100] [89] [118] [119] [120] [115] 
[126] [128] [129] [132] [146] 
[147] [149] [153] [155] [154] 

[29] [30] [23] [31] [32] [22] [25] [34] [28] [27] [37] 
[38] [39] [36] [40] [41] [50] [51] [45] [53] [54] [52] 
[49] [58] [62] [59] [64] [60] [61] [63] [80] [76] [81] 
[90] [93] [95] [97] [98] [100] [89] [108] [116] 
[117] [127] [131] [133] [138] [140] [141] [144] [145] 

[13] [31] [14] [15] [27] [11] [42] [44] [43] [54] 
[55] [46] [65] [63] [80] [84] [85] [86] [90] [79] 
[91] [92] [96] [100] [89] [105] [106] [107] 
[121] [124] [134] [140] [141] [142] 

4
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. Conclusion 

The main aim of the proposed investigation is to carry out a system-
tic study of AI techniques in the field of agriculture. The proposed study
onsiders twelve popular AI techniques according to their wide adoption
n agriculture and existing paper available such as fuzzy logic, genetic
lgorithm, neural network, particle swarm optimization, ant colony op-
imization, firefly algorithm, bat algorithm, artificial potential field ap-
roach, artificial bee colony algorithm, harmony search algorithm, cell
ecomposition, and simulated annealing. The findings of the proposed
ork are presented below 
11 
• The applications of various AI techniques for cultivation, monitor-
ing, and harvesting phases are provided in a systematic way to un-
derstand the development in the field. In addition to this, the ap-
plication of various agriculture robots and modern devices is also
highlighted for intelligent farming processes. 

• The application of robots and autonomous systems in farm-
ing has raised the standard of farming and becoming more
popular. 

• The AI techniques provide data frequently in a real-time manner,
leading to avoiding human errors and improving decision-making
capabilities. From the rigorous review, AI approaches and modern



M. Wakchaure, B.K. Patle and A.K. Mahindrakar Artificial Intelligence in the Life Sciences 3 (2023) 100057 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t  

r  

a  

A  

s  

1

types of equipment perform better than traditional practices with a
minimum human effort at the minimum required time. 

• Among all AI techniques, FL, ANN, and GA are widely accepted in
the field of agriculture, and the remaining techniques, such as PSO,
SA, ACO, ABC, HS, BA, CD, APF, and FA, need more attention and
improvement in the agriculture field. 

• AI techniques have been applied majorly to solving path planning
problems of the agriculture robot rather than core agricultural ac-
tivities of the cultivation, monitoring, and harvesting phases. 

• The contribution of AI is significantly more in the monitoring phase
and less in the harvesting phase, followed by the cultivation phase. 

• AI techniques have been used particularly in simulation work, so
there is a need to develop them for more real-time implementations.

• Standalone AI technique has been used commonly for solving agri-
culture problems compared to hybrid techniques; hence, more AI
techniques can be mixed with each other to get an effective one. 
12 
• The application of the agriculture robot in the monitoring phase,
followed by the harvesting phase, is more as compared to the cul-
tivation phase. More focus on robotics technology can be given for
the cultivation phase activities. 

• Most of the robot application in agriculture is developed using FL,
GA, and ANN. Hence there is much scope for the development of
other AI techniques for agriculture robot applications. 

In the future, the work may be extended by considering upcoming
ools such as IoT and advanced digitized equipment. Many of the algo-
ithms have been neglected because of their negligible presence in the
griculture field. These algorithms can be updated with the discussed
I algorithm for hybridization. The proposed work may help other re-
earchers to find the research gap in the field of agriculture ( Fig 2 - 11 ,
3 , 15 , 17 - 20 ). 
Fig. 2. Fuzzy Inference system [35] . 

Fig. 3. FL crop needs recommendations system [38] . 
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Fig. 4. Neural Network Topology of Maize Detection System [45] . 

Fig. 5. Architecture diagram for strawberries location finding [55] . 

Fig. 6. CNN classification model [59] . 

13 
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Fig. 7. GA optimized UAV trajectory planning [76] . 

Fig. 8. (a) Flowchart for apple recognition and (b) segmentation steps using GA [84] . 

14 
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Fig. 9. Multiple UAV working scenarios [90] . 

Fig. 10. PSO optimizes K-Means segmentation results of green pepper images [96] . 

Fig. 11. U-Go Robot test on the vineyard [102] . 

Fig. 12. Working of SA. 

15 
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Fig. 13. RHEA system architecture using SA [117] . 

Fig. 14. ACO mechanism. 

16 



M. Wakchaure, B.K. Patle and A.K. Mahindrakar Artificial Intelligence in the Life Sciences 3 (2023) 100057 

Fig. 15. System structure for farmland monitoring using ACO [127] . 

Fig. 16. ABC algorithm working mechanism. 

Fig. 17. (a) Orthophoto of the vineyard parcel and landscape (b) Coverage trajectories obtained using three quadrotors [139] . 
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Fig. 18. (a) Water stress-tolerant plant (left) and the stress-sensitive plant (right) [145] . 

Fig. 19. Output (a) and process (b) of the tree detection algorithm [149] . 
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Fig. 20. Flowchart of the firefly algorithm as an optimization tool [155] . 

Fig. 21. Papers available in the agriculture field using AI. 
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Fig. 22. Papers available on various phases of agriculture. 

Fig. 23. Simulation analysis versus experimental analysis. 

Fig. 24. Standalone approaches versus hybrid approaches. 

Fig. 25. Papers available on fuzzy logic. 

Fig. 26. Papers available on neural network. 

Fig. 27. Papers available on genetic algorithm. 

Fig. 28. Papers available particle swarm optimization. 

Fig. 29. Papers available on the artificial potential field. 
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Fig. 30. Papers available on simulated annealing. 

Fig. 31. Papers available ant colony optimization. 

Fig. 32. Papers available on artificial bee colony. 

Fig. 33. Papers available harmony search. 

Fig. 34. Papers available on bat algorithm. 

Fig. 35. Papers available on cell decomposition. 

Fig. 36. Papers available on the Firefly algorithm. 

Fig. 37. Robots used in each phase. 
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Fig. 38. Number of papers on AI techniques deployed 
with Robots. 
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